Reaction of Ethyl 7-Aminoindole-2-carboxylate with β **-Diketone and** β **-Oxo Ester Compounds**[†]

Mohamed El Ouar,^a Nousedine Knouzi^a and Jack Hamelin^{*b}

^aLaboratoire de Chimie Organique et Bioorganique, Faculté des Sciences, B.P. 20, 24000, El Jadida, Morocco

^bSynthèse et Electrosynthèse Organiques 3, UMR 6510, Campus de Beaulieu, 35042, Rennes, France

Reaction of ethyl 7-aminoindole-2-carboxylate has been investigated: 1*H*-pyrrolo[3,2-*h*]quinoline and 6-hydroxy-1*H*-pyrrolo-[3,2-*h*]quinoline derivatives are obtained with β -diketones and β -oxo esters, respectively.

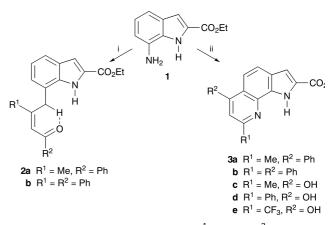
It has been reported recently that the reaction of 7-aminoindoles with acetylacetone gives 1H-pyrrolo[3,2-*h*]quinolines,¹ corresponding to a Combes synthesis.²

In this paper, we report the synthesis of 1*H*-pyrrolo-[3,2-h]quinoline and 6-hydroxy-1*H*-pyrrolo[3,2-h]quinoline derivatives (3) by condensation of ethyl 7-aminoindole-2-carboxylate (1) with β -diketones and β -oxo-esters, respectively.

The starting material (1) was prepared from 7-nitroindole-2-carboxylic acid, which was purchased from Janssen Chimica. Esterification followed by catalytic hydrogenation on Pd–charcoal gave the amino compound 1 in 71% yield.³

The reaction of the amine **1** with β -diketones ($\mathbb{R}^1 = \mathbb{M}e$, Ph, $\mathbb{R}^2 = Ph$) in 1:1.2 ratio gave the crotonic derivatives **2** in the presence of catalytic amounts of toluene-*p*-sulfonic acid (*p*-TSA) at 80 °C.⁴ The ¹H NMR spectra exhibit a singlet at 5.83 ($\mathbb{R}^1 = \mathbb{M}e$) and 6.21 ($\mathbb{R}^1 = Ph$) ppm for the vinylic protons. When the reaction temperature was raised to 220 °C, the quinolinic derivatives **3a,b** were isolated as the major products together with minor amounts of **2a,b**⁵ (Scheme 1).

To prove that the indole nitrogen was not sufficiently nucleophilic to react with the carbonyl groups of crotonic and acrylic compounds, we carried out the Conrad–Limpach reaction⁶ of amine **1** with the appropriate β -oxo esters. Under acid catalysis at 80 °C, only anils **2** (R¹=Me, Ph, R²=OEt) and 6,7,8,9-tetrahydro-1*H*-pyrrolo[3,2-*h*]-quinoline **4** (Scheme 2) were isolated.⁷ However, at 160 °C, 6-hydroxy-1*H*-pyrrolo[3,2-*h*]quinoline derivatives **3c**-e⁸⁻¹⁰ (R¹=Me, Ph, CF₃, R²=OH) were obtained. The structural assignment of compounds **3** and **4** was based on IR, NMR and mass spectroscopic data.


Experimental

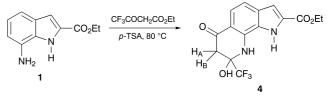
Mps are uncorrected and were measured with a Digital Melting Point Apparatus. IR spectra were recorded on a Perkin Elmer 1310 spectrophotometer, and NMR spectra with a Bruker AC 300 P (300 MHz for ¹H and 75 MHz for ¹³C) spectrometer (shifts in ppm relative to TMS). Mass spectra were performed with a Varian Mat 311 spectrometer (C.R.M.P.O. Rennes).

Reaction of Ethyl 7-Aminoindole-2-carboxylate (1) with β -Diketones.—(a) A mixture of 1 (0.2 g), β -diketone (1.17 mmol, 1.2 equivalents) and p-TSA 0.02 g) was heated to 80 °C for 90 min. After cooling the products were purified by chromatography on silica gel using CH₂Cl₂ as eluent to yield compound **2**.

Ethyl 7-[N-(1-*methyl*-3-oxo-3-phenylbut-1-enylamino] indole-2-carboxylate (**2a**). Starting from benzoylacetone the reaction leads to **2a**. Yield 60%; mp 160 °C (ether); ν_{max}/cm^{-1} (KBr) 3240 (NH), 1710 (C=O ester), 1600 (C=O chelated); $\delta_{\rm H}$ (CDCl₃) 1.33 (t, 3 H, ³J 7.1 Hz), 1.77 (s, 3 H), 4.37 (q, 2 H, ³J 7.1 Hz), 5.83 (s, 1 H, vinyl) 7.96 and 7.42 (dd and m, 5 H, R²=Ph) 7.07 (dd, 1 H, J_o 7.5, J_m

*To receive any correspondence (*e-mail:* Jack.Hamelin@univ-rennes1.fr).

Scheme 1 Reagents and conditions: i, $R^1COCH_2COR^2$, *p*-TSA, 80 °C; ii, $R^1COCH_2CO_2Me$, Et, *p*-TSA, 160 °C


1.0 Hz), 7.12 (t, 1 H, J_0 7.5 Hz), 7.29 (d, 1 H, J 2.0 Hz), 7.61 (dd, 1 H, J_0 7.5, J_m 1.0 Hz); m/z 348 (M⁺) (Found: 348.147. $C_{21}H_{20}N_2O_3$ requires 348.147).

Ethyl 7-[N-(1,3-*diphenyl*-3-*oxoprop*-1-*enyl*)*amino*]*indole*-2-*carboxylate* (**2b**). Starting from dibenzoylmethane the reaction leads to **2b**. Yield 65%; mp = 179 °C (ether); v_{max}/cm^{-1} (KBr) 3200 (NH), 1720 (C=O ester), 1610 (C=O chelated). $\delta_{\rm H}$ (CDCl₃) 1.41 (t, 3 H, J 7.2Hz), 4.42 (q, 2 H, J 7.2Hz), 6.21 (s, 1 H, vinyl), 6.55 (dd, 1 H, $J_{\rm o}$ 7.6, $J_{\rm m}$ 2.0 Hz), 6.84 (t, 1 H, $J_{\rm o}$ 7.6 Hz), 7.34–8.01 (m, 12 H, R¹, R² = Ph and H_3 , H_4); m/z 410 (M⁺) (Found: 410.165. C₆H₂₂N₂O₃ requires 410.163).

(b) A mixture of ethyl 7-aminoindole-2-carboxylate (1) (0.5 g), β -diketone (2.45 mmol) and a catalytic amount of *p*-TSA (0.04 g) was heated to 220 °C for 90 min. After cooling, the reaction products were separated by chromatography on silica gel using dichloromethane as eluent to yield compound **3** as the first fraction.

Ethyl 8-*methyl*-6-*phenyl*-1H̄-*pyrrolo*[3,2-h]*quinoline*-2-*carboxylate* **3a**, starting from benzoyl acetone. Yield 38%; mp 151 °C (ether); ν_{max}/cm^{-1} 1670 (C=O ester); δ_{H} (CDCl₃) 1.40 (t, 3 H, ${}^{3}J$ 7.1Hz), 2.68 (s, 3 H), 4.40 (q, 2 H, ${}^{3}J$ 7.1Hz), 7.30 (s, 1 H) 7.48 (m, 4 H), 7.61 (dd, 1 H, J_{o} 7.5, J_{m} 1.0Hz), 7.63 (d, 2 H, J_{o} 7.5Hz), 8.15 (d, 1 H, J_{o} 7.4 Hz), 10.40 (broad s, NH); δ_{C} (CDCl₃) 14.43, 1958, 60.92, 109.70, 116.53, 119.30, 121.34, 124.82, 126.05, 126.91, 127.38, 128.70, 129.11, 133.64, 138.0, 139.47, 145.17, 155.28, 161.61; *m/z* 330 (M⁺) (Found: 330.137. C₂₁H₁₈N₂O₂ requires 330.137).

Ethyl 6,8-*diphenyl*-1H-*pyrrolo*[3,2-h]*quinoline*-2-*carboxylate* **3b**, starting from dibenzoymethane. Yield 34%; mp 114–116 °C (ether); $\nu_{\text{max}}/\text{cm}^{-1}$ (KBr) 1670 (C=O ester); δ_{H} (CDCl₃) 1.41 (t, 3 H, ${}^{3}J$ 7.2 Hz), 4.42 (q, 2 H, ${}^{3}J$ 7.1 Hz), 7.32 (s, 1 H), 7.50 (m, 9 H), 7.61 (d, 1 H, J_{o} 9.0 Hz), 7.79 (s, 1 H), 8.19 (d, 2 H, J_{o} 8.4 Hz), 10.70 (broad s, NH); δ_{C} (CDCl₃) 14.42, 61.0, 109.70, 118.38, 119.0, 121.72, 123.46, 126.21, 127.20, 127.50, 128.33, 128.53, 128.78,

J. Chem. Research (S), 1998, 92–93[†]

Scheme 2

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S), 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (M).

129.28, 129.55, 133.45, 138.77, 138.84, 139.36, 149.53, 155.34, 161.65; m/z 392 (M⁺) (Found: 392.150. $C_{26}H_{20}N_2O_2$ requires 392.152).

Reaction of Ethyl 7-Aminoindole-2-carboxylate (1) with β -Oxo Esters.—A mixture of ethyl 7-aminoindole-2-carboxylate (1) (0.5 g), β -oxo-ester (1.5 equiv., 3.7 mmol) and a catalytic amount of *p*-TSA (0.04 g) was heated at 160 °C for 1 h. After cooling, the precipitate was filtered off and recrystallized from dimethylformamide.

Ethyl 6-*hydroxy*-8-*methyl*-1H-*pyrrolo*[3,2-h]*quinoline*-2-*carboxylate* (**3c**), starting from ethyl acetoacetate. Yield 45%; mp 151–153 °C (DMF); ν_{max}/cm^{-1} (KBr) 3200 (OH), 4.15 (q, 2 H, ³*J* 7.5 Hz), 6.71 (s, 1 H), 7.09, (s, 1 H), 7.51 (d, 1 H, J_0 7.5 Hz), 7.57 (d, 1 H, J_0 7.5 Hz); m/z 270 (M⁺) (Found: 270.100. C₁₅H₁₄N₂O₃ requires 270.10.

Ethyl 6-*hydroxy*-8-*phenyl*-1H-*pyrrolo*[3,2-h]*quinoline*-2-*carboxylate* (3d), starting from ethyl benzoylacetate. Yield 43%; mp 284 °C (DMF, dec.); ν_{max}/cm^{-1} (KBr) 3200 (OH), 1700 (C=O); $\delta_{\rm H}$ ([²H₆]DMSO/TFA) 1.04 (t, 3 H, ³J 7.4 Hz), 4.10 (q, 2 H, ³J 7.4 Hz), 7.02 (m, 2 H), 7.26 (m, 3 H), 7.44 (m, 4 H); $\delta_{\rm C}$ ([²H₆]DMSO/TFA) 1.6.40, 125.34, 12602, 129.02, 130.80, 131.58, 131.80, 132.25, 133.31, 134.74, 155.68, 165.12; *m*/*z* = 332 (M⁺) (Found: 332.115. C₂₀H₁₆N₂O₃ requires 332.116).

Ethyl 6-hydroxy-8-trifluoromethyl-1H-pyrrolo[3,2-h]quinoline-2-carboxy/late (**3e**), starting from ethyl trifluoromethylacetoacetate. Yield 46%; mp 320–322 °C (DMF); ν_{max}/cm^{-1} (KBr) 3300 (OH), 1710 (C=O); $\delta_{\rm H}$ ([²H₆]DMSO/TFA) 1.12 (t, 3 H, ³J 7.5 Hz), 4.16 (q, 2 H, ³J 7.4 Hz), 7.04 (s, 1 H), 7.10 (s, 1 H), 7.32 (d, 1 H, J_o 8.2 Hz), 7.44 (d, 1 H, J_o 8.8 Hz), 10.53 (broad s, NH); *m/z* 324 (M⁺) (Found: 324.073. C₁₅H₁₁N₂O₃F₃ requires 324.072).

Reaction of Ethyl 7-Aminoindole-2-carboxylate (1) with Ethyl Trifluoromethylacetoacetate.—A mixture of amine 1 (1.47 mmol), ethyl trifluoromethylacetoacetate (1.5 equiv.) and a catalytic amount of p-TSA (0.03 g) was heated at 80 °C for 1 h. After cooling, the precipitate was filtered off and recrystallized from ethanol.

Received, 2nd July 1997; Accepted, 9th October 1997 Paper E/7/07410G

References

- 1 M. El Ouar, N. Knouzi, A. El Kihel, E. M. Essassi, M. Benchidmi, J. Hamelin, R. Carrie and R. Danion-Bougot, *Synth. Commun.*, 1995, **25**, 1601.
- 2 G. Jones, Chem. Heterocycl. Compd., 1977, 32, 93.
- 3 K. Moustaid, Doctorat de l'Université, Franche Comté, 1991.
- 4 E. V. Brown, J. Org. Chem., 1965, 30, 1607.
- 5 J. C. Perche, G. Saint-Ruf and N. P. Buu-Hoï, J. Chem. Soc., Perkin Trans. 1, 1972, 260.
- 6 R. Madhav, R. Dufresne and P. Southwick, J. Heterocycl. Chem., 1973, 10, 225.
- 7 C. F. Spencer, H. R. Snyder Jr. and R. J. Alaimo, J. Heterocycl. Chem., 1975, 12, 1319.
- 8 S. Ichiwata and Y. Shiokawa, Chem. Pharm. Bull., 1969, 17, 1153.
- 9 S. Ichiwata and Y. Shiokawa, Chem. Pharm. Bull., 1969, 17, 2455.
- 10 A. Marcos, C. Pedregal and C. Avendaño, *Tetrahedron*, 1991, **47**, 7459.